

Tigase Message Archiving Component - Version 3.1.0

	1. Tigase Message Archiving Component

	2. Tigase Message Archiving Release Notes

	3. Additional features

	4. Database

	5. Configuration

	6. Usage

	7. Limitations

 Welcome to Tigase Message Archiving component guide

1. Tigase Message Archiving Component

Tigase Message Archiving Component originated as implementation of XEP-0136: Message Archiving [http://xmpp.org/extensions/xep-0136.html:] to add support for archiving of messages exchanged using Tigase XMPP Server. In current version component supports also XEP-0313: Message Archive Management [http://xmpp.org/extensions/xep-0313.html] specification to allow easier access to archived messages

2. Tigase Message Archiving Release Notes

Welcome to Tigase Message Archiving 3.0.0! This is a feature release for with a number of fixes and updates.

2.1. Tigase Message Archiving 3.1.0 Release Notes

	Added support for mam2#extended; #mam-73

	Fixed issues with retrieval of archived messages stored in DerbyDB; #mam-73

	Adjust log levels; #server-1115

	Fixed issue with scheduling message retention cleanup; #mam-76

	Improve MAM logging; #servers-384

	Disabled storage of errors for sent PubSub notifications; #mam-77

2.2. Tigase Message Archiving 3.0.0 Release Notes

2.2.1. Major Changes

	Add support for urn:xmpp:mam:2

	Add support for XEP-0308: Last Message Correction [https://xmpp.org/extensions/xep-0308.html]

2.2.2. All Changes

	#mam-47 [https://projects.tigase.net/issue/mam-47]: Add support for urn:xmpp:mam:2

	#mam-49 [https://projects.tigase.net/issue/mam-49]: Historical message duplication

	#mam-50 [https://projects.tigase.net/issue/mam-50]: XEP-0308: Last Message Correction

	#mam-51 [https://projects.tigase.net/issue/mam-51]: Fix OMEMO encrypted messages are not stored by MA or MAM

	#mam-54 [https://projects.tigase.net/issue/mam-54]: Fix NPE in MAM/Message Archiving

	#mam-55 [https://projects.tigase.net/issue/mam-55]: Fix IllegalArgumentException in MessageArchiveVHostItemExtension

	#mam-56 [https://projects.tigase.net/issue/mam-56]: Fix upgrade-schema failes

	#mam-58 [https://projects.tigase.net/issue/mam-58]: Change message archiving rules

	#mam-60 [https://projects.tigase.net/issue/mam-60]: Fix Message carbons stored in MAM

	#mam-61 [https://projects.tigase.net/issue/mam-61]: Adjust schema to use new primary keys

	#mam-65 [https://projects.tigase.net/issue/mam-65]: Fix archiveMessage: Data truncation: Data too long for column _body

	#mam-66 [https://projects.tigase.net/issue/mam-66]: Fix NPE in AbstractMAMProcessor.updatePrefrerences()

	#mam-67 [https://projects.tigase.net/issue/mam-67]: Fix Incorrect datetime value in JDBCMessageArchiveRepository

	#mam-68 [https://projects.tigase.net/issue/mam-68]: Add option to disable local MAM archive

	#mam-69 [https://projects.tigase.net/issue/mam-69]: Fix Data truncation: Data too long for column ‘_stanzaId’

	#mam-70 [https://projects.tigase.net/issue/mam-70]: Fix Schema is inconsistent (tigase.org mysql vs clean postgresql)

	#mam-72 [https://projects.tigase.net/issue/mam-72]: Fix Deadlock on inserting message

2.3. Previous Releases

2.3.1. Tigase Message Archiving 2.x release

2.3.1.1. Major changes

Tigase Message Archiving component has undergone a few major changes to our code and structure. To continue to use Tigase Message Archiving component, a few changes may be needed to be made to your systems. Please see them below:

Database schema changes

We decided to no longer use in-code database upgrade to update database schema of Message Archiving component and rather provide separate schema files for every supported database.

Additionally we moved from in-code generated SQL statements to stored procedures which are now part of provided database schema files.

To continue usage of new versions of Message Archiving component it is required to manually load new component database schema, see Preparation of database section for informations about that.

Warning

Loading of new database schema is required to use new version of Message Archiving component.

2.3.1.2. New features

2.3.1.2.1. Support for Message Archive Management protocol

Now Tigase Message Archiving component supports searching of archived message using XEP-0313: Message Archive Management [http://xmpp.org/extensions/xep-0313.html:] protocol.

For details on how to enable this feature look into Support for MAM

2.3.1.2.2. Support for using separate database for different domains

Since this version it is possible to use separate archived messages based on domains. This allows you to configure component to store archived message for particular domain to different database.

For more informations please look into Using seperate store for archived messages

3. Additional features

Tigase Message Archiving Component contains few additional features useful for working with message archives.

3.1. Querying in all messages

Feature allows user to search all of his archived messages without a need to specify who was send/receiver of this message. To search in all messages, request sent to retrieve archived messages should not contain with attribute. As a result, when with attribute is omitted <chat/> element of response will not contain with attribute but every <to/> and <from/> element will contain with attribute.

3.2. Querying by part of message body

This feature allows user to query for messages or collections containing messages which in body of a message contained text passed by user.

To execute request in which user wants to find messages with “test failed” string XMPP client needs to add following element

<query xmlns="http://tigase.org/protocol/archive#query">
 <contains>test failed</contains>
</query>

as child element of @retrieve@ or @list@ element of request.

3.2.1. Example query requests

3.2.1.1. Example 1

Retrieving messages with “test failed” string with user juliet@capulet.com between 2014-01-01 00:00:00 and 2014-05-01 00:00:00

<iq type="get" id="query2">
 <retrieve xmlns='urn:xmpp:archive'
 with='juliet@capulet.com'
 from='2014-01-01T00:00:00Z'
 end='2014-05-01T00:00:00Z'>
 <query xmlns="http://tigase.org/protocol/archive#query">
 <contains>test failed</contains>
 </query>
 </retrieve>
</iq>

3.2.1.2. Example 2

Retrieving collections containing messages with “test failed” string with user juliet@capulet.com between 2014-01-01 00:00:00 and 2014-05-01 00:00:00

<iq type="get" id="query2">
 <list xmlns='urn:xmpp:archive'
 with='juliet@capulet.com'
 from='2014-01-01T00:00:00Z'
 end='2014-05-01T00:00:00Z'>
 <query xmlns="http://tigase.org/protocol/archive#query">
 <contains>test failed</contains>
 </query>
 </list>
</iq>

3.3. Querying by tags

This feature adds support for tagging messages archived by Message Archiving component and by default is disabled (to learn how to enable this feature please see Enabling support for tags section).

Tagging can be done only by user sending message as to tag message tag needs to be included in message content (message body to be exact).

Currently there are 2 types of tags supported:

	hashtag - words prefixed by “hash” (#) are stored with prefix and used as tag, i.e. #Tigase

	mention - words prefixed by “at” (@) are stored with prefix and used as tag, i.e. @Tigase

Custom feature allows user to query/retrieve messages or collections from archive only containing particular tag or tags. To execute request in which user wants to retrieve only messages tagged with @User1 and #People XMPP client executing request needs to add following element as child element of <retrieve/> element or <list/> element:

<query xmlns="http://tigase.org/protocol/archive#query">
 <tag>#People</tag>
 <tag>@User1</tag>
</query>

3.3.1. Querying/retrieving list of messages or collections

3.3.1.1. Example 1

Request to retrieve messages tagged with @User1 and #People from chat with user juliet@capulet.com between 2014-01-01 00:00:00 and 2014-05-01 00:00:00

<iq type="get" id="query2">
 <retrieve xmlns='urn:xmpp:archive'
 with='juliet@capulet.com'
 from='2014-01-01T00:00:00Z'
 end='2014-05-01T00:00:00Z'>
 <query xmlns="http://tigase.org/protocol/archive#query">
 <tag>#People</tag>
 <tag>@User1</tag>
 </query>
 </retrieve>
</iq>

3.3.1.2. Example 2:

Request to retrieve collections containing messages tagged with @User1 and #People from chat with user juliet@capulet.com between 2014-01-01 00:00:00 and 2014-05-01 00:00:00

<iq type="get" id="query2">
 <list xmlns='urn:xmpp:archive'
 with='juliet@capulet.com'
 from='2014-01-01T00:00:00Z'
 end='2014-05-01T00:00:00Z'>
 <query xmlns="http://tigase.org/protocol/archive#query">
 <tag>#People</tag>
 <tag>@User1</tag>
 </query>
 </list>
</iq>

3.3.2. Retrieving list of tags used by user starting with some text

To search for hashtags or user names already used following request might be used:

<iq type="set" id="query2">
 <tags xmlns="http://tigase.org/protocol/archive#query" like="#test"/>
</iq>

which will return suggested similar hashtags which where found in database for particular user if following response:

<iq type="result" id="query2">
 <tags xmlns="http://tigase.org/protocol/archive#query" like="#test">
 <tag>#test1</tag>
 <tag>#test123</tag>
 <set xmlns="http://jabber.org/protocol/rsm">
 <first index='0'>0</first>
 <last>1</last>
 <count>2</count>
 </set>
 </tags>
</iq>

3.4. Automatic archiving of MUC messages

If this feature is enabled MUC messages are stored in Message Archiving repository and are added in same way as for any other messages and jid of MUC room is used as jid of message sender, so if MUC message sent from test@muc.example.com was stored then to retrieve this messages test@muc.example.com needs to be passed as with attribute to message retrieve request. Retrieved MUC messages will be retrieved in same format as normal message with one exception - each message will contain name attribute with name of occupant in room which sent this message.

This feature is by default disabled but it is possible to enable it for particular user. Additionally it is possible to change default setting on installation level and on hosted domain level to enable this feature, disable feature or allow user to decide if user want this feature to be enabled. For more information about configuration of this feature look at Configuration of automatic archiving of MUC messages

Note

	It is worth to mention that even if more than on user resource joined same room and each resource will receive same messages then only single message will be stored in Message Archving repository.

	It is also important to note that MUC messages are archived to user message archive only when user is joined to MUC room (so if message was sent to room but it was not sent to particular user)

4. Database

4.1. Preparation of database

Before you will be able to use Tigase Message Archiving Component and store messages in particular database you need to initialize this database. We provide few schemas for this component for MySQL, PostgreSQL, SQLServer and DerbyDB.

They are placed in database/ directory of installation package and named in dbtype-message-archiving-version.sql, where dbname in name of database type which this schema supports and version is version of a Message Archiving Component for which this schema is designed.

You need to manually select schema for correct database and component and load this schema to database. For more information about loading database schema look into Database Preparation section of Tigae XMPP Server Administration Guide

4.2. Upgrade of database schema

Database schema for our components may change between versions and if so it needs to be updated before new version may be started. To upgrade schema please follow instructions from Preparation of database section.

Note

If you use SNAPSHOT builds then schema may change for same version as this are versions we are still working on.

4.3. Schema description

Tigase Message Archiving component uses few tables and stored procedures. To make it easier to find them on database level they are prefixed with tig_ma_.

4.3.1. Table tig_ma_jids

This table stores all jids related to stored messages, ie. from to and from attributes of archived stanzas.

	Field

	Description

	Comments

	jid_id

	Database ID of a JID

	

	jid

	Value of a bare JID

	

	jid_sha1

	SHA1 value of lowercased bare JID

	Used for proper bare JID comparison during lookup.

(N/A to PostgreSQL schema)

	domain

	Domain part of a bare JID

	Stored for easier lookup of messages owned by users of a particular domain

4.3.2. Table tig_ma_msgs

Table stores archived messages.

	Field

	Description

	Comments

	stable_id

	Database ID of a message

	Unique with matching owner_id

	owner_id

	ID of a bare JID of a message owner

	References jid_id from tig_ma_jids

	buddy_id

	ID of a bare JID of a message recipient/sender (different than owner)

	References jid_id from tig_ma_jids

	ts

	Timestamp of a message

	Timestamp of archivization or delayed delivery

	body

	Body of a message

	

	msg

	Serialized message

	

	stanza_id

	ID attribute of archived message

	

	is_ref

	Marks if message is a reference to other message

	

	ref_stable_id

	stable_id of referenced message

	

4.3.3. Table tig_ma_tags

Table stores tags of archived messages. It stores one tag for many messages using tig_ma_msgs_tags to store relation between tag and a message.

	Field

	Description

	Comments

	tag_id

	Database ID of a tag

	

	owner_id

	ID of a bare JID of a tag owner

	ID of bare JID of owner for which messages with this tag were archived

	tag

	Actual tag value

	

4.3.4. Table tig_ma_msgs_tags

Table stores relations between tags and archived messages with this tags.

	Field

	Description

	Comments

	msg_owner_id

	ID of a bare JID of a tag owner

	ID of bare JID of owner for which messages with this tag were archived

	msg_stable_id

	Database ID of a message

	Unique with matching msg_owner_id

	tag_id

	Database ID of a tag

	References tag_id from tig_ma_tags

5. Configuration

To enable Tigase Message Archiving Component you need to add following block to etc/config.tdsl file:

message-archive () {
}

It will enable component and configure it under name message-archive. By default it will also use database configured as default data source to store data.

5.1. Custom Database

You can specify a custom database to be used for message archiving. To do this, define the archive-repo-uri property.

'message-archive' () {
 'archive-repo-uri' = 'jdbc:mysql://localhost/messagearchivedb?user=test&password=test'
}

Here, messagearchivedb hosted on localhost is used.

5.2. XEP-0136 Support

To be able to use Message Archiving component with XEP-0136: Message Archiving [http://xmpp.org/extensions/xep-0136.html:] protocol, you additionally need to enable message-archive-xep-0136 SessionManager processor:

sess-man {
 message-archive-xep-0136 () {
 }
}

This is required for some advanced options.

5.3. Support for MAM

If you want to use Message Archiving component with XEP-0313: Message Archive Management [http://xmpp.org/extensions/xep-0313.html:] protocol, then you need to enable urn:xmpp:mam:1 SessionManager processor:

sess-man {
 'urn:xmpp:mam:1' () {
 }
}

5.4. Setting default value of archiving level for message on a server

Setting this property will change default archiving level for messages for every account on server for which per account default archiving level is not set. User will be able to change this value setting default modes as described in XEP-0136 section 2.4 [http://xmpp.org/extensions/xep-0136.html#pref-default]

Possible values are:

	false
	Messages are not archived

	body
	Only message body will be stored. Message without a body will not be stored with this value set

	message
	While message stanza will be archived (if message should be stored, see Saving Options)

	stream
	In this mode every stanza should be archived. (Not supported)

To set default level to message you need to set default-store-method of message-archive processor to message:

sess-man {
 message-archive {
 default-store-method = 'message'
 }
}

5.5. Setting required value of archiving level for messages on a server

Setting this property will change required archiving level for messages for every account on server. User will be able to change this to any lower value by setting default modes as described in XEP-0136 section 2.4 [http://xmpp.org/extensions/xep-0136.html#pref-default] but user will be allowed to set higher archiving level. If this property is set to higher value then default archiving level is set then this setting will be used as default archiving level setting.

Possible values for this setting are the same as values for default archiving level setting, see Setting default value of archiving level for message on a server for list of possible values.

To set required level to body you need to set required-store-method of message-archive processor to body:

sess-man {
 message-archive {
 required-store-method = 'body'
 }
}

5.6. Enabling support for tags

To enable this feature Message Archiving component needs to be configured properly. You need to add tags-support = true line to message-archiving configuration section of etc/config.tdsl file. Like in following example:

message-archive {
 tags-support = true
}

where:

	message-archive - is name of configuration section under which Message Archiving component is configured to run

5.6.1. Saving Options

By default, Tigase Message Archive will only store the message body with some metadata, this can exclude messages that are lacking a body. If you decide you wish to save non-body elements within Message Archive, you can now can now configure this by setting msg-archive-paths to list of elements paths which should trigger saving to Message Archive. To additionally store messages with <subject/> element:

sess-man {
 message-archive {
 msg-archive-paths = ['-/message/result[urn:xmpp:mam:1]' '/message/body', '/message/subject']
 }
}

Where above will set the archive to store messages with <body/> or <subject/> elements and for message with <result xmlns="urn:xmpp:mam:1"/> element not to be stored.

Warning

It is recommended to keep entry for not storing message with <result xmlns="urn:xmpp:mam:1"/> element as this are results of MAM query and contain messages already stored in archive!

Tip

Enabling this for elements such as iq, or presence will quickly load the archive. Configure this setting carefully!

5.7. Configuration of automatic archiving of MUC messages

As mentioned above no additional configuration options than default configuration of Message Archiving component and plugin is needed to let user decide if he wants to enable or disable this feature (but it is disabled by default). In this case user to enable this feature needs to set settings of message archiving adding muc-save attribute to <default/> element of request with value set to true (or to false to disable this feature).

To configure state of this feature on installation level, it is required to set store-muc-messages property of message-archive SessionManager processor:

sess-man {
 message-archive {
 store-muc-messages = 'value'
 }
}

where value may be one of following values:

	user
	allows value to be set on domain level or by user if domain level setting allows that

	true
	enables feature for every user in every hosted domain (cannot be overridden by on domain or user level)

	false
	disables feature for every user in every hosted domain (cannot be overridden by on domain or user level)

To configure state of this feature on domain level, you need to execute vhost configuration command. In list of fields to configure domain, field to set this will be available with following values:

	user
	allows user to stat of this feature (if allowed on installation level)

	true
	enables feature for users of configured domain (user will not be able to disable)

	false
	disables feature for users of configured domain (user will not be able to disable)

5.8. Purging Information from Message Archive

This feature allows for automatic removal of entries older than a configured number of days from the Message Archive. It is designed to clean up database and keep its size within reasonable boundaries. If it is set to 1 day and entry is older than 24 hours then it will be removed, i.e. entry from yesterday from 10:11 will be removed after 10:11 after next execution of purge.

There are 3 settings available for this feature: To enable the feature:

'message-archive' {
 'remove-expired-messages' = true
}

This setting changes the initial delay after the server is started to begin removing old entries. In other words, MA purging will not take place until the specified time after the server starts. Default setting is PT1H, or one hour.

'remove-expired-messages-delay' = 'PT2H'

This setting sets how long MA purging will wait between passes to check for and remove old entries. Default setting is P1D which is once a day.

'remove-expired-messages-period' = 'PT2D'

You may use all settings at once if you wish.

NOTE that these commands are also compatible with unified-archive component, just replace message with unified.

5.8.1. Configuration of number of days in VHost

VHost holds a setting that determines how long a message needs to be in archive for it to be considered old and removed. This can be set independently per Vhost. This setting can be modified by either using the HTTP admin, or the update item execution in adhoc command.

This configuration is done by execution of Update item configuration adhoc command of vhost-man component, where you should select domain for which messages should be removed and then in field XEP-0136 - retention type select value Number of days and in field XEP-0136 - retention period (in days) enter number of days after which events should be removed from MA.

In adhoc select domain for which messages should be removed and then in field XEP-0136 - retention type select value Number of days and in field XEP-0136 - retention period (in days) enter number of days after which events should be removed from MA.

In HTTP UI select Other, then Update Item Configuration (Vhost-man), select the domain, and from there you can set XEP-0136 retention type, and set number of days at XEP-0136 retention period (in days).

5.9. Using separate store for archived messages

It is possible to use separate store for archived messages, to do so you need to configure new DataSource in dataSource section. Here we will use message-archive-store as a name of a data source. Additionally you need to pass name of newly configured data source to dataSourceName property of default repository of Message Archiving component.

Example:

dataSource {
 message-archive-store () {
 uri = 'jdbc:postgresql://server/message-archive-database'
 }
}

message-archive {
 repositoryPool {
 default () {
 dataSourceName = 'message-archive-store'
 }
 }
}

It is also possible to configure separate store for particular domain, i.e. example.com. Here we will configure data source with name example.com and use it to store data for archive:

dataSource {
 'example.com' () {
 uri = 'jdbc:postgresql://server/example-database'
 }
}

message-archive {
 repositoryPool {
 'example.com' () {
 # we may not set dataSourceName as it matches name of domain
 }
 }
}

Note

With this configuration messages for other domains than example.com will be stored in default data source.

5.10. Setting Pool Sizes

There are a high number of prepared statements which are used to process and archive messages as they go through the server, and you may experience an increase in resource use with the archive turned on. It is recommended to decrease the repository connection pool to help balance server load from this component using the Pool Size property:

'message-archive' (class: tigase.archive.MessageArchiveComponent) {
 'archive-repo-uri' = 'jdbc:mysql://localhost/messagearchivedb?user=test&password=test'
 'pool-size' = 15
}

5.11. Message Tagging Support

Tigase now is able to support querying message archives based on tags created for the query. Currently, Tigase can support the following tags to help search through message archives: - hashtag Words prefixed by a hash (#) are stored with a prefix and used as a tag, for example #Tigase - mention Words prefixed by an at (@) are stored with a prefix and used as a tag, for example @Tigase

NOTE: Tags must be written in messages from users, they do not act as wildcards. To search for #Tigase, a message must have #Tigase in the <body> element.

This feature allows users to query and retrieve messages or collections from the archive that only contain one or more tags.

5.11.1. Activating Tagging

To enable this feature, the following line must be in the config.tdsl file (or may be added with Admin or Web UI)

'message-archive' (class: tigase.archive.MessageArchiveComponent) {
 'tags-support' = true
}

5.11.2. Usage

To execute a request, the tags must be individual children elements of the retrieve or list element like the following request:

<query xmlns="http://tigase.org/protocol/archive#query">
 <tag>#People</tag>
 <tag>@User1</tag>
</query>

You may also specify specific senders, and limit the time and date that you wish to search through to keep the resulting list smaller. That can be accomplished by adding more fields to the retrieve element such as 'with', 'from', and 'end' . Take a look at the below example:

<iq type="get" id="query2">
 <retrieve xmlns='urn:xmpp:archive'
 with='juliet@capulet.com'
 from='2014-01-01T00:00:00Z'
 end='2014-05-01T00:00:00Z'>
 <query xmlns="http://tigase.org/protocol/archive#query">
 <tag>#People</tag>
 <tag>@User1</tag>
 </query>
 </retrieve>
</iq>

This stanza is requesting to retrieve messages tagged with @User1 and #people from chats with the user juliet@capulet.com between January 1st, 2014 at 00:00 to May 1st, 2014 at 00:00.

NOTE: All times are in Zulu or GMT on a 24h clock.

You can add as many tags as you wish, but each one is an AND statement; so the more tags you include, the smaller the results.

6. Usage

Now that we have the archive component running, how do we use it? Currently, the only way to activate and modify the component is through XMPP stanzas. Lets first begin by getting our default settings from the component:

<iq type='get' id='prefq'>
 <pref xmlns='urn:xmpp:archive'/>
</iq>

It’s a short stanza, but it will tell us what we need to know, Note that you do not need a from or a to for this stanza. The result is as follows:

<iq type='result' id='prefq' to='admin@domain.com/cpu'>
<pref xmlns='urn:xmpp:archive'>
<auto save='false'/>
<default otr='forbid' muc-save="false" save="body"/>
<method use="prefer" type="auto"/>
<method use="prefer" type="local"/>
<method use="prefer" type="manual"/>
</prefq>
</iq>

See below for what these settings mean.

6.1. XEP-0136 Field Values

	<auto/>
	
	Required Attributes

	save= Boolean turning archiving on or off

	Optional Settings

	scope= Determines scope of archiving, default is 'stream' which turns off after stream end, or may be 'global' which keeps auto save permanent,

	<default/>
	Default element sets default settings for OTR and save modes, includes an option for archive expiration.

	Required Attribures

	otr= Specifies setting for Off The Record mode. Available settings are:

	approve The user MUST explicitly approve OTR communication.

	concede Communications MAY be OTR if requested by another user.

	forbid Communications MUST NOT be OTR.

	oppose Communications SHOULD NOT be OTR.

	prefer Communications SHOULD be OTR.

	require Communications MUST be OTR.

	save= Specifies the portion of messages to archive, by default it is set to body.

	body Archives only the items within the <body/> elements.

	message Archive the entire XML content of each message.

	stream Archive saves every byte of communication between server and client. (Not recommended, high resource use)

	Optional Settings

	expire= Specifies after how many seconds should the server delete saved messages.

	<item/>
	The Item element specifies settings for a particular entity. These settings will override default settings for the specified JIDS.

	Required Attributes

	JID= The Jabber ID of the entity that you wish to put these settings on, it may be a full JID, bare JID, or just a domain.

	otr= Specifies setting for Off The Record mode. Available settings are:

	approve The user MUST explicitly approve OTR communication.

	concede Communications MAY be OTR if requested by another user.

	forbid Communications MUST NOT be OTR.

	oppose Communications SHOULD NOT be OTR.

	prefer Communications SHOULD be OTR.

	require Communications MUST be OTR.

	save= Specifies the portion of messages to archive, by default it is set to body.

	body Archives only the items within the <body/> elements.

	message Archive the entire XML content of each message.

	stream Archive saves every byte of communication between server and client. (Not recommended, high resource use)

	Optional Settings

	expire= Specifies after how many seconds should the server delete saved messages.

	<method/>
	This element specifies the user preference for available archiving methods.

	Required Attributes

	type= The type of archiving to set

	auto Preferences for use of automatic archiving on the user’s server.

	local Set to use local archiving on user’s machine or device.

	manual Preferences for use of manual archiving to the server.

	use= Sets level of use for the type

	prefer The selected method should be used if it is available.

	concede This will be used if no other methods are available.

	forbid The associated method MUST not be used.

Now that we have established settings, lets send a stanza changing a few of them:

<iq type='set' id='pref2'>
 <pref xmlns='urn:xmpp:archive'>
 <auto save='true' scope='global'/>
 <item jid='domain.com' otr='forbid' save='body'/>
 <method type='auto' use='prefer'/>
 <method type='local' use='forbid'/>
 <method type='manual' use='concede'/>
 </pref>
</iq>

This now sets archiving by default for all users on the domain.com server, forbids OTR, and prefers auto save method for archiving.

6.2. Manual Activation

Turning on archiving requires a simple stanza which will turn on archiving for the use sending the stanza and using default settings.

<iq type='set' id='turnon'>
 <pref xmlns='urn:xmpp:archive'>
 <auto save='true'/>
 </pref>
</iq>

A sucessful result will yield this response from the server:

<iq type='result' to='user@domain.com' id='turnon'/>

Once this is turned on, incoming and outgoing messages from the user will be stored in tig_ma_msgs table in the database.

7. Limitations

	Component groups messages in collections using date of a messages instead of id of message thread, due to fact that some clients are sending messages with no thread id (ie. Psi, Psi+).

	Only bare JID is stored of sender or recipient.

Index

 nav.xhtml

 Table of Contents

 		
 Tigase Message Archiving Component - Version 3.1.0

 		
 Tigase Message Archiving Component

 		
 Tigase Message Archiving Release Notes

 		
 Additional features

 		
 Database

 		
 Configuration

 		
 Usage

 		
 Limitations

_static/minus.png

_static/plus.png

_static/file.png

